High speed torque transducer 0126 DL

1. Introduction

The development of new combustion-motors and transmissions, the research of the propulsion cords through test rig simulation, demand a short build, compact and stiff torque transducer with high accuracy .
The series can be set in for speed upto 24000 rpm.

2. Advantages

The short, stiff construction and therewith resulting compact mechanical design of test rigs results high mechanical self frequencies, which means large ranges of measurement frequencies from $0-1000 \mathrm{~Hz}$ and allows therefore high dynamic measurements. Large above-and ranges of exchange load as well as very good accuracy of measurement predestine the measurement flane for dynamic performance test rigs. A high-definition speed measurement with 2 traces and zero signal are optional at disposal. The electric calibration signal produces 100% rated torque of the strain gauge bridge, further more a static calibration can be carried out with weights and lever arm before and after the motor brake.
The torque signal is available as analog or frequency signal. A CE-labelling is obligatory with converter operation in regards to application with motor brake in 3-phase technique.

0126 DL

3. Design

The transducer consists of a rotor with flange connection for application of standard couplings.
Integrated in the stator part is the adjustment electronics with standardized outputs for the torque ($0 . . . \pm 10 \mathrm{VDC}$ or frequency output). The speed signal is available as TTL-signal.
The stator can be mounted to the housing base.

4. Electrical data

The data corresponds with the transducer according to data sheet 0126 DL

5. Application

The torque transducers are used on different FORMEL 1-test stands for optimization or similar rigs.

6. Mechanical dimensions

	nominal torque range Nm				
	100	200	500	1000	1500
L	132		160	21	
L1	67		80	10	
ϕ D	88		110	14	
¢ D 1	92		115	15	
A	47		53	53	
B	3		3	3	
C	16		16	16	
D	115		135	15	
E	71		86	95	
F	24		30	3	
G	29		29	2	
H	6		10	1	
I	41		49	4	
J	3		2	2	
K	109		126		
5	9		9	9	
$\frac{1}{k g \pi^{2}}$	0.0014		0.005		17
	34500	71000	167000	460000	530000

picture of flange
$1000+15,00 \mathrm{Nm}$

